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Abstract This paper evaluates the effects of using data

observed on regular nested grids on the parameter esti-

mates of a two-parameter Gompertz diffusion model. This

new spatial diffusion process represents a technically more

complex stage of Gompertz modeling. Firstly, the diffusion

model is introduced through an appropriate transformation

of a two-parameter Gaussian diffusion process. Probabi-

listic characteristics of this model, such as the transition

densities and the trend functions, are obtained. Secondly,

statistical estimation is considered using data obtained on a

regular or irregular grid; the explicit expression of the

likelihood equations and the parameter estimators are given

for regular grids. Finally, a simulation experiment illus-

trates the results of this paper.

Keywords Diffusion process � Gompertz diffusion

process � Maximum likelihood � Spatial process

1 Introduction

The Gompertz stochastic model was introduced by Prajenshu

(1980) and Tan (1986), and applied by several authors

(see, for example, Troynikov 1998; Miller et al. 2000). The

diffusion version of this constitutes a model of great interest

to investigators in several fields, including demography,

biology, economics and environmental sciences. This process

is known in the literature as the stochastic Gompertz growth

model and is applied in diffusion schemes for modelling

positive (or negative) feedback processes (see Gutiérrez et al.

2006a, b). In economics terms, they are applied for modelling

processes in which cheap products become cheaper and

expensive products become more expensive, a phenomenon

known as winner takes all (see McGee and Sammut 2002) or

winner takes most (see Amit and Zott 2001). In such cases a

diffusion model with a sigmoidal development (for example,

a Gompertz diffusion) is considered and then appropriate

competitive interaction terms are included.

In the one-parameter case, important real phenomena have

been successfully modeled using Gompertz diffusions. In that

respect, Kiiski and Pohjola (2002) applied them for analysing

the Internet diffusion between 1995 and 2000. In the theory of

population growth, Ricciardi (1977) applied a Gompertz

diffusion by adding a white noise fluctuation to the intrinsic

fertility of a population. In energy studies, Gutiérrez et al.

(2005a, b) used them for explaining the growth of the natural

gas consumption in Spain in comparison with other models.

Recently, in cell growth studies, Albano and Giorno (2006)

considered a Gompertz model for modeling the tumor growth

and, in environmental sciences, Gutiérrez et al. (2008a) used

a bivariate stochastic Gompertz diffusion for modeling the

gross domestic product and CO2 emissions in Spain.

From the point of view of the statistical inference on

Gomperz diffusions, the problem of estimating the param-

eters in the drift coefficient has great interest, among other

reasons, because a diffusion process can be introduced by

means of a stochastic differential equation (Arnold 1973).

The drift coefficient of this equation might include ‘‘exog-

enous factors’’ that let us consider known external variables

which could have a hypothetical influence over the endog-

enous variable. This approach gives alternatives in relation
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to parameter estimation and inference, derivation of pre-

diction and simulation schemes and other analyses.

Random field models have been considered to solve

problems, among other areas of application, in hydroge-

ology, geostatistics, climate modeling, or environmental

analysis (see, for example, Christakos 1992). Two-param-

eter Gompertz diffusions are suitable to model growth

phenomena on a subset of the plane. Different authors

introduce the Gompertz diffusion process from the point of

view of Itô’s stochastic differential equations and the sto-

chastic model is then solved analytically by applying Itô’s

calculus. In fact, the two-parameter Gompertz diffusion

considered in this paper could be introduced as the solution

of a stochastic partial differential equation (SPDE) by

applying Proposition 2.4 established in Nualart (1983),

which would require to prove the hypotheses I to IV stated

in that paper. However, taking into account that other

characteristics such as the transition densities and problems

as parameter estimation are solved by considering the

Gompertz diffusion as certain transformation of a Gaussian

diffusion, in the next section, the spatial Gompertz diffu-

sion process will be introduced through an appropriate

transformation of a two-parameter Gaussian diffusion.

Technically, the Lognormal diffusion model is a partic-

ular case of a Gompertz diffusion. Gutiérrez and Roldán

(2007) carried out a general study of two-parameter Log-

normal diffusions that Gutiérrez et al. (2005a, b, 2007)

completed with the development of techniques for estima-

tion, prediction and conditional simulation of these diffu-

sions. Using these results, in the second section several

analytical properties for the two-parameter Gompertz dif-

fusion targeted at making inference in this model using

discrete sampling are obtained. The problem of estimating

the parameters involved in the model is dealt with in the third

section considering the maximum likelihood methodology

and using data observed on a regular or irregular grid. In the

Gompertz model, data are affected by an exponential func-

tion and then the very high variability between them implies

that with few data the estimates obtained will be very poor.

Therefore, in the fourth section a simulation experiment is

developed to illustrate the effect of regular nested grid

sampling schemes on the parameter estimates.

2 Two-parameter Gompertz diffusion model

The theory of two-parameter diffusions was introduced by

Nualart (1983) considering a class of spatial processes

which are diffusions on each coordinate and satisfy a par-

ticular Markov property related to partial ordering in R?
2 .

Let X zð Þ : z ¼ s; tð Þ 2 I ¼ 0; S½ � � 0; T½ � � R2
þ

� �
be a

positive valued two-parameter Markov process (see Cairoli

1971) defined on a probability space X;A;Pð Þ; with initial

value X(0,0) = 1. The distribution of the spatial process is

determined by the following transition probabilities:

P B; s þ h; t þ kð Þ j x1; x; x2ð Þ; zð Þ
¼ P X s þ h; t þ kð Þ 2 B j X s; t þ kð Þ ¼ x1;½

zð Þ ¼ x;X s þ h; kð Þ ¼ x2�;

where z = (s, t) [ I, h, k [ 0, x = (x1, x, x2) and B is a

Borel subset. We suppose that the transition densities exist

and are given by

gðy; sþ h; t þ kð Þ j x; zÞ

¼ 1

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pm2

z;h;k

q exp �1

2

ln ðyÞ � lz;x;h;k

mz;h;k

� �2
( )

;

for y [ R?, with

lz;x;h;k ¼ e�b1h ln x1þ e�b2k ln x2� e�b1h�b2k ln x

þ a� r2

2

� �
1

b1b2

1� e�b1h� e�b2k þ e�b1h�b2k
� �

;

m2
z;h;k ¼

r2

4b1b2

1� e�2b1h� e�2b2k þ e�2b1h�2b2k
� �

:

and a, b1, b2 and r being real parameters.

Let Y zð Þ : z 2 If g be the spatial process defined as

Y zð Þ ¼ ebzT

ln XðzÞ:

The initial value is Y(0, 0) = 0 and the transition densities

are given by

f ðy; sþ h; t þ kð Þ j x1; x; x2ð Þ; zÞ

¼ 1

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pv2

z;h;k

q exp �1

2

y� x1 � x2 þ x� mz;h;k

vz;h;k

� �2
( )

;

for x1, x2, x, y [ R, z = (s, t) [ I, h, k [ 0, with

mz;h;k ¼ a� r2

2

� � Zsþh

s

Ztþk

t

eb1rþb2sdrds

¼ a� r2

2

� �
1

b1b2

eb1 sþhð Þ � eb1s
� 	

eb2 tþkð Þ � eb2t
� 	

;

v2
z;h;k ¼ r2

Zsþh

s

Ztþk

t

e2b1rþ2b2sdrds

¼ r2 1

4b1b2

e2b1 sþhð Þ � e2b1s
� 	

e2b2 tþkð Þ � e2b2t
� 	

:

Under these conditions (see Gutiérrez and Roldán, 2007),

{Y(z) : z [ I} is a two-parameter Gaussian diffusion with

drift and diffusion coefficients, respectively, given by

~a s; tð Þ ¼ a� r2

2

� �
ebzT

; ~B s; tð Þ ¼ r2e2bzT

:
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The remaining diffusion coefficients are all null. Further-

more, if z, z0 [ I, z = (s, t), z0 = (s0, t0), then

mY zð Þ ¼ E Y zð Þ½ � ¼
Zs

0

Z t

0

~a r; sð Þdrds

¼ a� r2

2

� �
1

b1b2

eb1s � 1
� �

eb2t � 1
� �

;

r2
Y zð Þ ¼ var Y zð Þð Þ ¼

Zs

0

Z t

0

~B r; sð Þdrds

¼ r2

4b1b2

e2b1s � 1
� �

e2b2t � 1
� �

;

cY z; z0ð Þ ¼ cov Y zð Þ; Y z0ð Þð Þ ¼ r2
Y z ^ z0ð Þ;

where we write z ^ z0 for (s ^ s0, t ^ t0), with ‘^’ denoting

the minimum. Therefore, we can finally assert that {X(z) :

z [ I} is a two-parameter Gompertz diffusion.

Taking into account that Y zð Þ N mY zð Þ; r2
Y zð Þ

� �
; it is

clear that

e�bzt

Y zð Þ N e�bzt

mY zð Þ; e�2bzt

r2
Y zð Þ

� 	

and then, the trend functions of the two-parameter

Gompertz diffusion are given by the following expression:

E½X zð Þ� ¼ E exp e�bzt

Y zð Þ
� 	h i

¼ exp e�bzt

mY zð Þ þ e�2bzt

2
r2

Y zð Þ

 �

¼ exp a� r2

2

� �
1

b1b2

1� e�b1s
� �

1� e�b2t
� �


þ r2

8b1b2

1� e�2b1s
� �

1� e�2b2t
� ��

:

The class of two-parameter diffusions under consideration

satisfy that the stochastic processes which appear fixing each

coordinate of the parameter space are diffusions as well, in

this case, Gompertz diffusions. Next, we summarize some

interesting results related to these processes.

For fixed t [ [0, T], the stochastic process {Y(s, t) : s [
[0, S]} is a Gaussian diffusion with drift and diffusion

coefficients given by

~a1;t sð Þ¼
Z t

0

~a s;sð Þds¼ a�r2

2

� �
eb1s

Z t

0

eb2sds

¼ a�r2

2

� �
eb1s

b2

eb2t�1
� �

;

~B1;t sð Þ¼
Z t

0

~B s;sð Þds¼r2e2b1s

Z t

0

e2b2sds¼r2e2b1s

2b2

e2b2t�1
� �

:

By means of the transformation X s;tð Þ¼exp e�bzt
Y s;tð Þ

� �
;

and using Itô’s stochastic calculus, the stochastic process

{X(s, t) : s [ [0, S] } is the Gompertz diffusion with drift

and diffusion coefficients given, respectively, by

a1;t s; xð Þ ¼
 

� b1ln xþ a� r2

2

� �
eb1s

b2

eb2t � 1
� �

þ r2e2b1s

2b2

e2b2t � 1
� �

!

x

B1;t s; xð Þ ¼ r2e2b1s

2b2

e2b2t � 1
� �

x2:

For fixed s [ [0, S], the stochastic process {X(s, t) : t [
[0, T]} satisfies similar properties which can be obtained by

symmetry. Finally, note that for b ¼ 0 ¼ 0; 0ð Þ; X(z) is a

two-parameter Lognormal diffusion (see Gutiérrez and

Roldán 2007).

3 Statistical inference on the model

In this section, the maximum likelihood method is applied

to obtain the estimates of a, b1, b2 and r2; firstly, when data

are assumed to be observed on a regular grid, and secondly,

when data are observed on an irregular grid. A numerical

example is described for illustrating the two-parameter

Gompertz diffusion model and the solution of the likeli-

hood equations using data on a regular grid.

3.1 Parameter estimation from data on a regular grid

Let us suppose that data are observed on a regular grid with

n = m1m2 locations, and c1 and c2 are the constant incre-

ments on the X-axis and on the Y-axis, respectively, that is,

data are observed on the spatial locations

zij ¼ c1i; c2jð Þ; i ¼ 1; . . .;m1; j ¼ 1; . . .;m2:

Denoting

x ¼ xij; i ¼ 1; . . .;m1; j ¼ 1; . . .;m2

� �
;

c ¼ a� r2

2
; h1 ¼ e�c1b1 and h2 ¼ e�c2b2 ;

and taking into account that {P[xij = 1] = 1 : i = 0 or

j = 0}, the joint density function is given by

L x; a; b; r2
� �

¼
Ym1

i¼1

Ym2

j¼1

1

xij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p r2

4b1b2
1� h2

1

� �
1� h2

2

� �q

� exp

(
�2b1b2

r2 1� h2
1

� �
1� h2

2

� �

�
 

ln xij � h1ln xi�1j � h2ln xij�1

þ h1h2ln xi�1j�1 �
c 1� h1ð Þ 1� h2ð Þ

b1b2

!2)

:
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Considering the log-likelihood function, differentiating it

with respect to c and r2, and equating to 0, we obtain the

estimates for c and r2:

bc ¼ b̂1b̂2

n 1� ĥ1

� 	
1� ĥ2

� 	

�
X

i;j

ln xij � ĥ1

X

i;j

ln xi�1j � ĥ2

X

i;j

ln xij�1

 

þ ĥ1ĥ2

X

i;j

ln xi�1j�1

!

;

ð1Þ

r̂2 ¼ 4b̂1b̂2

n 1� ĥ2
1

� 	
1� ĥ2

2

� 	
X

i;j

ln xij � ĥ1ln xi�1j � ĥ2ln xij�1

h

þ ĥ1ĥ2ln xi�1j�1 � bc 1� ĥ1

� 	
1� ĥ2

� 	
=b̂1b̂2

i2

:

ð2Þ

Differentiating the log-likelihood function with respect

to b1 and b2, equating to 0, and using Eqs. 1 and 2, we

obtain the following non-linear equation system:

X

i;j

"

ln xij � ĥ1ln xi�1j � ĥ2ln xij�1 þ ĥ1ĥ2ln xi�1j�1

�
bc 1� ĥ1

� 	
1� ĥ2

� 	

b̂1b̂2

#

� �ln xi�1j þ ĥ2ln xi�1j�1

� 	
¼ 0;

ð3Þ

X

i;j

"

ln xij � ĥ1ln xi�1j � ĥ2ln xij�1 þ ĥ1ĥ2ln xi�1j�1

�
ĉ 1� ĥ1

� 	
1� ĥ2

� 	

b̂1b̂2

#

� �ln xij�1 þ ĥ1ln xi�1j�1

� 	
¼ 0:

ð4Þ

Replacing Eq. 1 in Eqs. 3 and 4, we obtain two equations

that only depend on h1 and h2. This non-linear system is

solved to obtain ĥ1 and ĥ2: As we can see in the examples,

these equations have several solutions but only one of them

is real (the remaining solutions are complex and then

invalid).

3.1.1 Numerical example

For illustrating the computational solution of the likelihood

Eqs. 1–4 a two-parameter Gompertz diffusion with b1 = 1,

b2 = 2, c = 0.5 (equivalently, a = 2.5) and r2 = 4 was

considered.

A MatLab program was implemented to carry out

the calculations. Data were obtained by unconditional

simulation on a square grid (see Fig. 1) with the unit

measurement as the grid spacing and with SW corner at

point (1,1) and NE corner at point (20, 20); see Fig. 2.

Figure 3 shows the histograms of the 400 values of {X(zi)}

and {lnX(zi)}.

The values of the maximum likelihood estimates of b1

and b2 were obtained as follows. Equations 3 and 4 are:

� 26876:8þ 76194:0ĥ1 þ 6142:4ĥ2 � 25156:0ĥ2
2

� 19062:7ĥ1ĥ2 þ 72381:4ĥ1ĥ
2
2 ¼ 0

� 10032:1þ 6142:4ĥ1 þ 76030:5ĥ2 � 9531:3ĥ2
1

� 50312:0ĥ1ĥ2 þ 72381:4ĥ2
1ĥ2 ¼ 0
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Fig. 1 Regular grid with 20 9 20 observation locations
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Fig. 2 Contour-level plot of 400 values of {X(zi)}
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The real solution is:

ĥ1 ¼ 0:3537; ĥ2 ¼ 0:1345
n o

;

and then

b̂1 ¼ 1:0393; b̂2 ¼ 2:0060
n o

Replacing them in Eqs. 1 and 2,bc ¼ 0:3677 and r̂2 ¼ 4:1240:

3.2 Parameter estimation from data on an irregular grid

Let us now suppose that data X = (X(z1),…,X(zn))t are

observed at known spacial locations z1 = (s1,t1),…,

zn = (sn, tn) [ I, and let x = (x1,…,xn) be a sample. Let us

consider the transformed n-dimensional random vector

Y ¼ Y z1ð Þ; . . .; Y znð Þð Þt¼ ebzt
1 ln X z1ð Þ; . . .; ebzt

n ln X znð Þ
� 	t

and the transformed sample, y = (y1,…,yn). Under the

previous conditions we can assert that the joint density

function of the random vector Y is

f yð Þ ¼ 1

2pð Þn=2 RYj j1=2
exp �1

2
y�mYð Þt RYð Þ�1 y�mYð Þ


 �
;

where

mY ¼ mY z1ð Þ; . . .;mY znð Þð Þt;
RY ¼ r2

Y zi ^ zj

� �� �
i;j¼1;...;n

:

Denoting

h1i¼ eb1si ; i¼1;...;n;

h2i¼ eb2ti ; i¼1;...;n;

Eh¼

ebzt
1 0 ��� 0

0 ebzt
2 ��� 0

..

. ..
. . .

. ..
.

0 0 ��� ebzt
n

0

BBBB@

1

CCCCA
¼

h11h21 0 ��� 0

0 h12h22 ��� 0

..

. ..
. . .

. ..
.

0 0 ��� h1nh2n

0

BBBB@

1

CCCCA
;

the mean and the covariance function of Y are, respectively,

given by

mY zið Þ ¼ a� r2

2

� �
1

b1b2

ebzt � eb1s � eb2t þ 1
� 	

¼ c
b1b2

1� h1ið Þ 1� h2ið Þ;

r2
Y zið Þ ¼

r2

4b1b2

e2bzt � e2b1s � e2b2t þ 1
� 	

¼ r2

4b1b2

1� h2
1i

� �
1� h2

2i

� �
:

Let us write

mY ¼
c

b1b2

mh ¼
c

b1b2

1� h11ð Þ 1� h21ð Þ
1� h12ð Þ 1� h22ð Þ

..

.

1� h1nð Þ 1� h2nð Þ

0

BBBBB@

1

CCCCCA

RY ¼
r2

4b1b2

Ch

¼ r2 1

4b1b2

1� h
1 si^sjð Þh1 ti^tjð Þ

� 	�

� 1� h
2 si^sjð Þh2 ti^tjð Þ

� 		

i;j¼1;...;n
:

With this notation, the joint density function of the random

vector X is given by

g xð Þ ¼
Qn

i¼1 xi

2pð Þn=2 r2

4b1b2
Ch

���
���
1=2Qn

i¼1 h1ih2i

� exp �2b1b2

r2
Ehln x� c

b1b2

mh

� �t

C�1
h




� Eh ln x� c
b1b2

mh

� ��
:

As before, considering the log-likelihood function, differ-

entiating with respect to c and r2, and equating to 0, we

obtain

bc ¼ b̂1b̂2 mt
ĥ
C�1

ĥ
m

ĥ

� 	�1

mt
ĥ
C�1

ĥ
E

ĥ
ln x

and

r̂2 ¼ 4b̂1b̂2

n
E

ĥ
ln x� c

b̂1b̂2

m
ĥ

 !t

C�1

ĥ
E

ĥ
ln x� ĉ

b̂1b̂2

m
ĥ

 !

:

The case of data observed on an irregular grid is

technically more complex and explicit expressions of the

non-linear equation system satisfied by b1 and b2 cannot be

obtained. In this case, the implementation of the maximum

likelihood methodology can be done directly by numerical

computation.
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Fig. 3 Histograms of 400 values of a {X(zi)} and b {ln X(zi)}
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4 Simulation experiment: Sensitivity of the parameter

estimates to the density of nested grid data

A simulation experiment was carried out in order to evaluate

the effect of the grid density on the estimates of the

parameters b1, b2, c and r2. In this experiment a spatial

Gompertz diffusion on a subset of the plane with b1 = 0.5,

b2 = 1, c = 0.5 and r2 = 4 was considered and data

were simulated on nested square (m1 = m2 = m) grids:

X(zi) : X(i, j), i, j = 1,…,m, with m = 10, 20, 40, 80 (see

Fig. 4). The number of simulations was chosen to be

M = 10000, which justifies the inclusion up to the third

decimal place in Table 1. Figure 5 shows a boxplot for each

parameter calculated using the estimates obtained from the

10000 replications of the simulation experiment. The aver-

age of these estimates and the estimated mean squared

error (MSE) for each of them calculated as ð1=10000ÞP10000
r¼1 ðh� ĥrÞ2; are presented in Table 1. The computation

of data by unconditional simulation, as well as the

estimation of the parameters and MSEs were carried out

using a MatLab program. Figure 5 shows how the efficiency

of the estimates increases as the grid size increases.

5 Conclusion

The two-parameter Gompertz diffusion model introduced

in this paper represents a technically more complex stage

of Gompertz modeling. In a real case, data observed on

a subset of the plane that exhibit non-normality and a

very high variability can be successfully modeled, among

other alternatives, as coming from a Gompertz spatial

process.

Data are affected by an exponential function and then

the very high variability between them implies that with

few data the estimates obtained will be very poor. The

worst results are obtained for r2, since its calculation

depends on the results of the remaining estimates.
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(a)

(c) (d)

(b)Fig. 4 Spatial configuration of

the simulation experiment. Dots

show the data location: a sparse

(10 9 10), b medium

(20 9 20), c dense (40 9 40)

and d very dense (80 9 80)

nested grids

Table 1 Monte Carlo estimates

and estimated MSEs of the

parameters

m b̂1 MSE(b1) b̂2 MSE(b2) bc MSE(c) r̂2 MSE(r2)

10 0.549 0.027 1.135 0.187 0.636 1.132 3.599 1.525

20 0.513 0.005 1.023 0.019 0.522 0.022 3.824 0.261

40 0.506 0.002 1.006 0.005 0.507 0.013 3.951 0.038

80 0.503 0.001 1.003 0.002 0.505 0.011 3.987 0.007
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The derivation of the maximum likelihood estimators has

been developed in detail because it directly concerns the

clear understanding and interpretation of the simulation

study and its results. The calculation of the Fisher infor-

mation matrix and its inverse is also interesting, among

other issues, to study the asymptotic behavior of these

estimators. This calculation, tedious and with a certain

technical complexity in the Gompertz case, has not been

considered here because it was not used explicitly in the

simulation study (see Sect. 4), the main aim of this paper.

This methodology has been discussed by several authors in

different situations, such as concerning diffusion processes.

For example, using continuous sampling, the Fisher infor-

mation matrix was obtained in Gutiérrez et al. (2008b) for a

I-CIR diffusion (the inverse Cox–Ingersoll–Ross diffusion

model) to study the asymptotic behavior of the estimators.

In the multivariate case, Dunn and Brisbin (1985) obtained

the Fisher information matrix for the multivariate Ornstein–

Uhlenbeck diffusion process based on discrete sampling.
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